Our funding

Here you can read about the different sources of funding that support our research at KTH Glycoscience, including the goals and timelines of each funded project. The paragraphs below are taken directly from successful funding applications, and lay out our plans for each research project.

Wood Nanotechnology – New Materials from Trees. Ongoing support from the Wallenberg Wood Science Centre.

Photo by veeterzy on Pexels.com

We are grateful for ongoing salary support for Lauren and Ioanna from the Wallenberg Wood Science Centre. This enables our work and education activities related to the biosynthesis, fractionation, and exploitation of wood and wood components, primarily aiming at biorefinery and biomaterial applications. The WWSC and associated Treesearch community offers networking opportunities, graduate schools, infrastructure access, and a direct line to experts in academia and industry in Sweden.

Rheological characterisation of sustainable hydrogels exploiting a newly discovered protein:carbohydrate interaction. Funded by the Carl Trygger Foundation. 2022-2024.

Photo by Yan Krukov on Pexels.com

We have developed a novel route to producing useful hydrogels from branched polysaccharides that avoids the chemical synthesis and fossil-based polymers used in current manufacture. In our molecular biology lab, we lack the resources necessary for a critical aspect of our work – we don’t have any reliable access to a rheometer, although rheological analysis of our hydrogels is absolutely vital for understanding the strength, properties, and potential applications of our materials. Thanks to this funding, we are now able to purchase an advanced rheometer for our lab!

A new sustainable route to polysaccharide hydrogel formation for medical and cosmetic applications. Funded by Formas, the Swedish research council for sustainability. 2020-2023.

Photo by RF._.studio on Pexels.com

Hydrogels are an extremely versatile class of material, and have found relevance in cosmetic, medical, pharmaceutical, and industrial processes. A hydrogel has a low solid content, often comprising at least 90% water. Although hydrogels are increasingly used, the production process is far from sustainable, relying on fossil-based polymers and chemical cross-linking steps, using compounds that are harmful to human health. We are investigating small proteins that can be used to cross-link polysaccharides (complex carbohydrate polymers), thereby creating a strong network that holds water, forming a hydrogel. The process avoids all chemical solvents, and allows us to use biopolymers of renewable natural origin, rather than synthetic or fossil-based polymers. We will soon test the biocompatability of our gels, so we can start edsigning some specific products for the cosmetic or biomedical sectors!

Engineering improved stability and substrate binding into enzymes for efficient hydrolysis of lignocellulosic biomass. Funded by the Swedish energy agency. 2020-2025.

Photo by Flickr on Pexels.com

The overall aim of this project is to enhance the efficiency of industrial biomass saccharification for biofuel production by designing and engineering new enzymes with enhanced hydrolytic capabilities and high thermostability. We are studying a new class of small protein domains found in some bacterial enzymes, and have demonstrated that they provide a truly significant boost to enzyme thermostability and hydrolytic capacity on complex biomass. We are exploring how wide-spread these domains are, and what kinds of enzyme activities they can boost, and are engineering stability into new target enzymes.

INTENT: INducible TransgENic Technology for disease resistance in plants. Funded by Vetenskapsrådet, the Swedish research council for basic science. 2017-2021.

Photo by Pixabay on Pexels.com

The overall aim of INTENT was to improve crop plant defences against emerging infectious fungal diseases. This multi-disciplinary project combined biochemistry, molecular biology, and plant pathology. The project takes inspiration from naturally protective bacteria in the soil in order to design novel plant protection techniques, with relevance to food security, soil conservation, and climate change. This funding from Vetenskapsrådet provided Lauren with some stability and autonomy, so she could begin to establish a competitive new research team with the ambition to understand the roles of soil bacteria in biomass recycling and plant health, and to be inspired by these species to develop new technologies for sustainable agriculture and forestry, built on a strong foundation of molecular science.

Enzymatic epoxidation of suberin monomers for thermoset production. Funded by the Wallenberg Wood Science Centre. 2017-2019.

Photo by mali maeder on Pexels.com

The epoxidation of suberin and cutin from tree bark to increase the content of epoxidised compounds would increase the yield of polymers available for the production of thermosetting bioplastics. This could valorise a waste-stream from the wood biorefinery, as bark is removed from the wood prior to processing. In this project, we worked with newly identified epoxidase enzymes from plants and microorganisms that can introduce epoxy groups to long chain fatty acids, in the hope of using them to epoxidise the monomers of suberin/cutin. We also optimised a mild biorefinery approach for the extraction of suberin from tree bark, which represents a sustainable high-value product. This work will be commercialised by the start-up company Reselo AB, founded 2021.

New approaches to the prevention of fungal disease in young trees inspired by beneficial soil bacteria. Funded by the Anna and Nils Håkansson Foundation. 2017.

Photo by mali maeder on Pexels.com

Soil bacteria produce enzymes that attack the cell walls of pathogenic fungi. We discovered and characterised new anti-fungal enzymes with relevance for disease prevention in young trees. The use of natural enzymes from soil bacteria prevents the introduction of ‘foreign’ proteins to the forest ecosystem and reduces pesticide use. The project involved gene cloning, protein production, and enzyme characterisation.